ページの改善
いますぐフォークしてオンライン編集し、このページのプルリクエストを送信します。
Github へのログインが必要です。 これは小さな変更に適しています。
大きな変更を加えたい場合は、通常の cloneの使用をお勧めします。
日本語版について
個人的な学習のために、dlang.orgを翻訳したサイトです。
翻訳に際して、様々なサイトを参考にしています。
std.complex
This module contains the Complex type, which is used to represent
complex numbers, along with related mathematical operations and functions.
Complex will eventually
replace
the built-in types cfloat, cdouble, creal, ifloat,
idouble, and ireal.
Authors:
Lars Tandle Kyllingstad, Don Clugston
License:
Source std/complex.d
- pure nothrow @nogc @safe auto
complex
(R)(const Rre
)
if (is(R : double));
pure nothrow @nogc @safe autocomplex
(R, I)(const Rre
, const Iim
)
if (is(R : double) && is(I : double)); - Helper function that returns a complex number with the specified real and imaginary parts.Parameters:
R (template parameter) type of real part of complex number I (template parameter) type of imaginary part of complex number R re
real part of complex number to be constructed I im
(optional) imaginary part of complex number, 0 if omitted. Returns:Complex instance with real and imaginary parts set to the values provided as input. If neitherre
norim
are floating-point numbers, the return type will be Complex!double. Otherwise, the return type is deduced using std.traits.CommonType!(R, I).Examples:auto a = complex(1.0); static assert(is(typeof(a) == Complex!double)); writeln(a.re); // 1.0 writeln(a.im); // 0.0 auto b = complex(2.0L); static assert(is(typeof(b) == Complex!real)); writeln(b.re); // 2.0L writeln(b.im); // 0.0L auto c = complex(1.0, 2.0); static assert(is(typeof(c) == Complex!double)); writeln(c.re); // 1.0 writeln(c.im); // 2.0 auto d = complex(3.0, 4.0L); static assert(is(typeof(d) == Complex!real)); writeln(d.re); // 3.0 writeln(d.im); // 4.0L auto e = complex(1); static assert(is(typeof(e) == Complex!double)); writeln(e.re); // 1 writeln(e.im); // 0 auto f = complex(1L, 2); static assert(is(typeof(f) == Complex!double)); writeln(f.re); // 1L writeln(f.im); // 2 auto g = complex(3, 4.0L); static assert(is(typeof(g) == Complex!real)); writeln(g.re); // 3 writeln(g.im); // 4.0L
- struct
Complex
(T) if (isFloatingPoint!T); - A complex number parametrised by a type T, which must be either float, double or real.
- T
re
; - The real part of the number.
- T
im
; - The imaginary part of the number.
- const @safe string
toString
();
const voidtoString
(Writer, Char)(scope Writerw
, ref scope const FormatSpec!CharformatSpec
)
if (isOutputRange!(Writer, const(Char)[])); - Converts the complex number to a string representation.The second form of this function is usually not called directly; instead, it is used via std.string.format, as shown in the examples below. Supported format characters are 'e', 'f', 'g', 'a', and 's'. See the std.format and std.string.format documentation for more information.Examples:
auto c = complex(1.2, 3.4); // Vanilla toString formatting: writeln(c.toString()); // "1.2+3.4i" // Formatting with std.string.format specs: the precision and width // specifiers apply to both the real and imaginary parts of the // complex number. import std.format : format; writeln(format("%.2f", c)); // "1.20+3.40i" writeln(format("%4.1f", c)); // " 1.2+ 3.4i"
- this(R : T)(Complex!R
z
);
this(Rx : T, Ry : T)(const Rxx
, const Ryy
);
this(R : T)(const Rr
); - Construct a complex number with the specified real and imaginary parts. In the case where a single argument is passed that is not complex, the imaginary part of the result will be zero.
- pure nothrow @nogc @safe T
abs
(T)(Complex!Tz
); - Parameters:
Complex!T z
A complex number. Returns:The absolute value (or modulus) ofz
.Examples:static import core.math; writeln(abs(complex(1.0))); // 1.0 writeln(abs(complex(0.0, 1.0))); // 1.0 writeln(abs(complex(1.0L, -2.0L))); // core.math.sqrt(5.0L)
- pure nothrow @nogc @safe T
sqAbs
(T)(Complex!Tz
);
pure nothrow @nogc @safe TsqAbs
(T)(const Tx
)
if (isFloatingPoint!T); - Parameters:
Complex!T z
A complex number. T x
A real number. Returns:The squared modulus ofz
. For genericity, if called on a real number, returns its square.Examples:import std.math.operations : isClose; writeln(sqAbs(complex(0.0))); // 0.0 writeln(sqAbs(complex(1.0))); // 1.0 writeln(sqAbs(complex(0.0, 1.0))); // 1.0 assert(isClose(sqAbs(complex(1.0L, -2.0L)), 5.0L)); assert(isClose(sqAbs(complex(-3.0L, 1.0L)), 10.0L)); assert(isClose(sqAbs(complex(1.0f,-1.0f)), 2.0f));
- pure nothrow @nogc @safe T
arg
(T)(Complex!Tz
); - Parameters:
Complex!T z
A complex number. Returns:The argument (or phase) ofz
.Examples:import std.math.constants : PI_2, PI_4; writeln(arg(complex(1.0))); // 0.0 writeln(arg(complex(0.0L, 1.0L))); // PI_2 writeln(arg(complex(1.0L, 1.0L))); // PI_4
- pure nothrow @nogc @safe T
norm
(T)(Complex!Tz
); - Extracts the norm of a complex number.Parameters:
Complex!T z
A complex number Returns:The squared magnitude ofz
.Examples:import std.math.operations : isClose; import std.math.constants : PI; writeln(norm(complex(3.0, 4.0))); // 25.0 writeln(norm(fromPolar(5.0, 0.0))); // 25.0 assert(isClose(norm(fromPolar(5.0L, PI / 6)), 25.0L)); assert(isClose(norm(fromPolar(5.0L, 13 * PI / 6)), 25.0L));
- pure nothrow @nogc @safe Complex!T
conj
(T)(Complex!Tz
); - Parameters:
Complex!T z
A complex number. Returns:The complex conjugate ofz
.Examples:writeln(conj(complex(1.0))); // complex(1.0) writeln(conj(complex(1.0, 2.0))); // complex(1.0, -2.0)
- Complex!T
proj
(T)(Complex!Tz
); - Returns the projection of
z
onto the Riemann sphere.Parameters:Complex!T z
A complex number Returns:The projection ofz
onto the Riemann sphere.Examples:writeln(proj(complex(1.0))); // complex(1.0) writeln(proj(complex(double.infinity, 5.0))); // complex(double.infinity, 0.0) writeln(proj(complex(5.0, -double.infinity))); // complex(double.infinity, -0.0)
- pure nothrow @nogc @safe Complex!(CommonType!(T, U))
fromPolar
(T, U)(const Tmodulus
, const Uargument
); - Constructs a complex number given its absolute value and argument.Parameters:
T modulus
The modulus U argument
The argument Returns:The complex number with the given modulus and argument.Examples:import core.math; import std.math.operations : isClose; import std.math.algebraic : sqrt; import std.math.constants : PI_4; auto z = fromPolar(core.math.sqrt(2.0), PI_4); assert(isClose(z.re, 1.0L)); assert(isClose(z.im, 1.0L));
- pure nothrow @nogc @safe Complex!T
sin
(T)(Complex!Tz
);
pure nothrow @nogc @safe Complex!Tcos
(T)(Complex!Tz
);
pure nothrow @nogc @safe Complex!Ttan
(T)(Complex!Tz
); - Trigonometric functions on complex numbers.Parameters:
Complex!T z
A complex number. Returns:The sine, cosine and tangent ofz
, respectively.Examples:static import core.math; writeln(sin(complex(0.0))); // 0.0 writeln(sin(complex(2.0, 0))); // core.math.sin(2.0)
Examples:static import core.math; static import std.math; writeln(cos(complex(0.0))); // 1.0 writeln(cos(complex(1.3, 0.0))); // core.math.cos(1.3) writeln(cos(complex(0.0, 5.2))); // std.math.cosh(5.2)
Examples:static import std.math; int ceqrel(T)(const Complex!T x, const Complex!T y) @safe pure nothrow @nogc { import std.math.operations : feqrel; const r = feqrel(x.re, y.re); const i = feqrel(x.im, y.im); return r < i ? r : i; } assert(ceqrel(tan(complex(1.0, 0.0)), complex(std.math.tan(1.0), 0.0)) >= double.mant_dig - 2); assert(ceqrel(tan(complex(0.0, 1.0)), complex(0.0, std.math.tanh(1.0))) >= double.mant_dig - 2);
- pure nothrow @nogc @safe Complex!T
asin
(T)(Complex!Tz
);
pure nothrow @nogc @safe Complex!Tacos
(T)(Complex!Tz
);
pure nothrow @nogc @safe Complex!Tatan
(T)(Complex!Tz
); - Inverse trigonometric functions on complex numbers.Parameters:
Complex!T z
A complex number. Returns:The arcsine, arccosine and arctangent ofz
, respectively.Examples:import std.math.operations : isClose; import std.math.constants : PI; writeln(asin(complex(0.0))); // 0.0 assert(isClose(asin(complex(0.5L)), PI / 6));
Examples:import std.math.operations : isClose; import std.math.constants : PI; import std.math.trigonometry : std_math_acos = acos; writeln(acos(complex(0.0))); // std_math_acos(0.0) assert(isClose(acos(complex(0.5L)), PI / 3));
Examples:import std.math.operations : isClose; import std.math.constants : PI; writeln(atan(complex(0.0))); // 0.0 assert(isClose(atan(sqrt(complex(3.0L))), PI / 3)); assert(isClose(atan(sqrt(complex(3.0f))), float(PI) / 3));
- pure nothrow @nogc @safe Complex!T
sinh
(T)(Complex!Tz
);
pure nothrow @nogc @safe Complex!Tcosh
(T)(Complex!Tz
);
pure nothrow @nogc @safe Complex!Ttanh
(T)(Complex!Tz
); - Hyperbolic trigonometric functions on complex numbers.Parameters:
Complex!T z
A complex number. Returns:The hyperbolic sine, cosine and tangent ofz
, respectively.Examples:static import std.math; writeln(sinh(complex(0.0))); // 0.0 writeln(sinh(complex(1.0L))); // std.math.sinh(1.0L) writeln(sinh(complex(1.0f))); // std.math.sinh(1.0f)
Examples:static import std.math; writeln(cosh(complex(0.0))); // 1.0 writeln(cosh(complex(1.0L))); // std.math.cosh(1.0L) writeln(cosh(complex(1.0f))); // std.math.cosh(1.0f)
Examples:import std.math.operations : isClose; import std.math.trigonometry : std_math_tanh = tanh; writeln(tanh(complex(0.0))); // 0.0 assert(isClose(tanh(complex(1.0L)), std_math_tanh(1.0L))); assert(isClose(tanh(complex(1.0f)), std_math_tanh(1.0f)));
- pure nothrow @nogc @safe Complex!T
asinh
(T)(Complex!Tz
);
pure nothrow @nogc @safe Complex!Tacosh
(T)(Complex!Tz
);
pure nothrow @nogc @safe Complex!Tatanh
(T)(Complex!Tz
); - Inverse hyperbolic trigonometric functions on complex numbers.Parameters:
Complex!T z
A complex number. Returns:The hyperbolic arcsine, arccosine and arctangent ofz
, respectively.Examples:import std.math.operations : isClose; import std.math.trigonometry : std_math_asinh = asinh; writeln(asinh(complex(0.0))); // 0.0 assert(isClose(asinh(complex(1.0L)), std_math_asinh(1.0L))); assert(isClose(asinh(complex(1.0f)), std_math_asinh(1.0f)));
Examples:import std.math.operations : isClose; import std.math.trigonometry : std_math_acosh = acosh; writeln(acosh(complex(1.0))); // 0.0 assert(isClose(acosh(complex(3.0L)), std_math_acosh(3.0L))); assert(isClose(acosh(complex(3.0f)), std_math_acosh(3.0f)));
Examples:import std.math.operations : isClose; import std.math.trigonometry : std_math_atanh = atanh; writeln(atanh(complex(0.0))); // 0.0 assert(isClose(atanh(complex(0.5L)), std_math_atanh(0.5L))); assert(isClose(atanh(complex(0.5f)), std_math_atanh(0.5f)));
- pure nothrow @nogc @trusted Complex!real
expi
(realy
); - Parameters:
real y
A real number. Returns:The value of cos(y) + i sin(y).Note
expi
is included here for convenience and for easy migration of code.Examples:import core.math : cos, sin; writeln(expi(0.0L)); // 1.0L writeln(expi(1.3e5L)); // complex(cos(1.3e5L), sin(1.3e5L))
- pure nothrow @nogc @safe Complex!real
coshisinh
(realy
); - Parameters:
real y
A real number. Returns:The value of cosh(y) + i sinh(y)Note
coshisinh
is included here for convenience and for easy migration of code.Examples:import std.math.trigonometry : cosh, sinh; writeln(coshisinh(3.0L)); // complex(cosh(3.0L), sinh(3.0L))
- pure nothrow @nogc @safe Complex!T
sqrt
(T)(Complex!Tz
); - Parameters:
Complex!T z
A complex number. Returns:The square root ofz
.Examples:static import core.math; writeln(sqrt(complex(0.0))); // 0.0 writeln(sqrt(complex(1.0L, 0))); // core.math.sqrt(1.0L) writeln(sqrt(complex(-1.0L, 0))); // complex(0, 1.0L) writeln(sqrt(complex(-8.0, -6.0))); // complex(1.0, -3.0)
- pure nothrow @nogc @trusted Complex!T
exp
(T)(Complex!Tx
); - Calculates ex.Parameters:
Complex!T x
A complex number Returns:The complex base e exponential ofx
Special Values x exp(x) (±0, +0) (1, +0) (any, +∞) (NAN, NAN) (any, NAN) (NAN, NAN) (+∞, +0) (+∞, +0) (-∞, any) (±0, cis(x.im)) (+∞, any) (±∞, cis(x.im)) (-∞, +∞) (±0, ±0) (+∞, +∞) (±∞, NAN) (-∞, NAN) (±0, ±0) (+∞, NAN) (±∞, NAN) (NAN, +0) (NAN, +0) (NAN, any) (NAN, NAN) (NAN, NAN) (NAN, NAN) Examples:import std.math.operations : isClose; import std.math.constants : PI; writeln(exp(complex(0.0, 0.0))); // complex(1.0, 0.0) auto a = complex(2.0, 1.0); writeln(exp(conj(a))); // conj(exp(a)) auto b = exp(complex(0.0L, 1.0L) * PI); assert(isClose(b, -1.0L, 0.0, 1e-15));
- pure nothrow @nogc @safe Complex!T
log
(T)(Complex!Tx
); - Calculate the natural logarithm of x. The branch cut is along the negative axis.Parameters:
Complex!T x
A complex number Returns:The complex natural logarithm ofx
Special Values x log(x) (-0, +0) (-∞, π) (+0, +0) (-∞, +0) (any, +∞) (+∞, π/2) (any, NAN) (NAN, NAN) (-∞, any) (+∞, π) (+∞, any) (+∞, +0) (-∞, +∞) (+∞, 3π/4) (+∞, +∞) (+∞, π/4) (±∞, NAN) (+∞, NAN) (NAN, any) (NAN, NAN) (NAN, +∞) (+∞, NAN) (NAN, NAN) (NAN, NAN) Examples:import core.math : sqrt; import std.math.constants : PI; import std.math.operations : isClose; auto a = complex(2.0, 1.0); writeln(log(conj(a))); // conj(log(a)) auto b = 2.0 * log10(complex(0.0, 1.0)); auto c = 4.0 * log10(complex(sqrt(2.0) / 2, sqrt(2.0) / 2)); assert(isClose(b, c, 0.0, 1e-15)); writeln(log(complex(-1.0L, 0.0L))); // complex(0.0L, PI) writeln(log(complex(-1.0L, -0.0L))); // complex(0.0L, -PI)
- pure nothrow @nogc @safe Complex!T
log10
(T)(Complex!Tx
); - Calculate the base-10 logarithm of x.Parameters:
Complex!T x
A complex number Returns:The complex base 10 logarithm ofx
Examples:import core.math : sqrt; import std.math.constants : LN10, PI; import std.math.operations : isClose; auto a = complex(2.0, 1.0); writeln(log10(a)); // log(a) / log(complex(10.0)) auto b = log10(complex(0.0, 1.0)) * 2.0; auto c = log10(complex(sqrt(2.0) / 2, sqrt(2.0) / 2)) * 4.0; assert(isClose(b, c, 0.0, 1e-15));
- pure nothrow @nogc @safe Complex!T
pow
(T, Int)(Complex!Tx
, const Intn
)
if (isIntegral!Int);
pure nothrow @nogc @trusted Complex!Tpow
(T)(Complex!Tx
, const Tn
);
pure nothrow @nogc @trusted Complex!Tpow
(T)(Complex!Tx
, Complex!Ty
);
pure nothrow @nogc @trusted Complex!Tpow
(T)(const Tx
, Complex!Tn
); - Calculates xn. The branch cut is on the negative axis.Parameters:
Complex!T x
base Int n
exponent Returns:x
raised to the power ofn
Examples:import std.math.operations : isClose; auto a = complex(1.0, 2.0); writeln(pow(a, 2)); // a * a writeln(pow(a, 3)); // a * a * a writeln(pow(a, -2)); // 1.0 / (a * a) assert(isClose(pow(a, -3), 1.0 / (a * a * a)));
Examples:import std.math.operations : isClose; writeln(pow(complex(0.0), 2.0)); // complex(0.0) writeln(pow(complex(5.0), 2.0)); // complex(25.0) auto a = pow(complex(-1.0, 0.0), 0.5); assert(isClose(a, complex(0.0, +1.0), 0.0, 1e-16)); auto b = pow(complex(-1.0, -0.0), 0.5); assert(isClose(b, complex(0.0, -1.0), 0.0, 1e-16));
Examples:import std.math.operations : isClose; import std.math.exponential : exp; import std.math.constants : PI; auto a = complex(0.0); auto b = complex(2.0); writeln(pow(a, b)); // complex(0.0) auto c = complex(0.0L, 1.0L); assert(isClose(pow(c, c), exp((-PI) / 2)));
Examples:import std.math.operations : isClose; writeln(pow(2.0, complex(0.0))); // complex(1.0) writeln(pow(2.0, complex(5.0))); // complex(32.0) auto a = pow(-2.0, complex(-1.0)); assert(isClose(a, complex(-0.5), 0.0, 1e-16)); auto b = pow(-0.5, complex(-1.0)); assert(isClose(b, complex(-2.0), 0.0, 1e-15));
Copyright © 1999-2022 by the D Language Foundation | Page generated by
Ddoc on Wed Nov 23 08:33:15 2022